We develop architectures for forecasting person images of various appearances. At the core of the method is adaptive rendering modules. A series of generation examples of various reference images rendered into new poses is shown above.

Adaptive Appearance Rendering


We propose an approach to generate images of people given a desired appearance and pose. Disentangled representations of pose and appearance are necessary to handle the compound variability in the resulting generated images. Hence, we develop an approach based on intermediate representations of poses and appearance: our pose-guided appearance rendering network firstly encodes the targets’ poses using an encoder-decoder neural network. Then the targets’ appearances are encoded by learning adaptive appearance filters using a fully convolutional network. Finally, these filters are placed in the encoder-decoder neural networks to complete the rendering. We demonstrate that our model can generate images and videos that are superior to state-of-the-art methods, and can handle pose guided appearance rendering in both image and video generation.

29th British Machine Vision Conference